Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 377: 32

Answer

The required ${{n}^{th}}$ degree polynomial function is $3{{x}^{4}}-{{x}^{3}}-9{{x}^{2}}+159x-52$.

Work Step by Step

The general linear equation is $f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)\left( x-{{c}_{4}} \right)$ , the roots are ${{c}_{1}}=-4,{{c}_{2}}=\frac{1}{3},{{c}_{3}}=2+3i$ , and ${{c}_{4}}=2-3i$. $\begin{align} & f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)\left( x-{{c}_{4}} \right) \\ & ={{a}_{n}}\left( x+4 \right)\left( x-\frac{1}{3} \right)\left( x-2-3i \right)\left( x-2+3i \right) \\ & ={{a}_{n}}\left( {{x}^{4}}-\frac{{{x}^{3}}}{3}-3{{x}^{2}}+53x-\frac{52}{3} \right) \end{align}$ Now, compute the value of ${{a}_{n}}$. Use $f\left( 1 \right)=100$ $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{4}}-\frac{{{x}^{3}}}{3}-3{{x}^{2}}+53x-\frac{52}{3} \right) \\ & 100={{a}_{n}}\left( {{\left( 1 \right)}^{4}}-\frac{{{\left( 1 \right)}^{3}}}{3}-3{{\left( 1 \right)}^{2}}+53\left( 1 \right)-\frac{52}{3} \right) \\ & 100={{a}_{n}}\left( 1-\frac{1}{3}-3+53-\frac{52}{3} \right) \\ & {{a}_{n}}=3 \end{align}$ Substitute the value of ${{a}_{n}}$ in the linear equation. $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{4}}-\frac{{{x}^{3}}}{3}-3{{x}^{2}}+53x-\frac{52}{3} \right) \\ & =3\left( {{x}^{4}}-\frac{{{x}^{3}}}{3}-3{{x}^{2}}+53x-\frac{52}{3} \right) \\ & =3{{x}^{4}}-{{x}^{3}}-9{{x}^{2}}+159x-52 \end{align}$ Therefore, the polynomial equation is $3{{x}^{4}}-{{x}^{3}}-9{{x}^{2}}+159x-52$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.