Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 377: 28

Answer

The required ${{n}^{th}}$ degree polynomial function is $3{{x}^{3}}+12{{x}^{2}}-93x-522$.

Work Step by Step

The linear general equation is $f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)$ , the roots are ${{c}_{1}}=-5+2i$ , ${{c}_{2}}=-5-2i$ and ${{c}_{3}}=6$. $\begin{align} & f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right) \\ & ={{a}_{n}}\left( x+5-2i \right)\left( x+5+2i \right)\left( x-6 \right) \\ & ={{a}_{n}}\left( {{x}^{3}}+4{{x}^{2}}-31x-174 \right) \end{align}$ Calculate the value of ${{a}_{n}}$. Use $f\left( 2 \right)=-636$ $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{3}}+4{{x}^{2}}-31x-174 \right) \\ & -636={{a}_{n}}\left( {{\left( 2 \right)}^{3}}+4{{\left( 2 \right)}^{2}}-31\left( 2 \right)-174 \right) \\ & ={{a}_{n}}\left( -212 \right) \\ & {{a}_{n}}=3 \end{align}$ Substitute the value of ${{a}_{n}}$ in the linear equation. $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{3}}+4{{x}^{2}}-31x-174 \right) \\ & =3\left( {{x}^{3}}+4{{x}^{2}}-31x-174 \right) \\ & =3{{x}^{3}}+12{{x}^{2}}-93x-522 \end{align}$ Therefore, the polynomial equation is $3{{x}^{3}}+12{{x}^{2}}-93x-522$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.