Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 377: 25

Answer

The required ${{n}^{th}}$ degree polynomial function is $2{{x}^{3}}-2{{x}^{2}}+50x-50$.

Work Step by Step

The general linear equation is $f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)$ , the roots are ${{c}_{1}}=5i$ , ${{c}_{2}}=-5i$ and ${{c}_{3}}=1$. $\begin{align} & f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right) \\ & ={{a}_{n}}\left( x-5i \right)\left( x+5i \right)\left( x-1 \right) \\ & ={{a}_{n}}\left( {{x}^{3}}-{{x}^{2}}+25x-25 \right) \end{align}$ Calculate the value of ${{a}_{n}}$. Use $f\left( -1 \right)=-104$ $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{3}}-{{x}^{2}}+25x-25 \right) \\ & -104={{a}_{n}}\left( {{\left( -1 \right)}^{3}}-{{\left( -1 \right)}^{2}}+25\left( -1 \right)-25 \right) \\ & ={{a}_{n}}\left( -1-1-25-25 \right) \\ & {{a}_{n}}=\frac{104}{52} \\ & =2 \end{align}$ Substitute the value of ${{a}_{n}}$ in the linear equation as follows: $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{3}}-{{x}^{2}}+25x-25 \right) \\ & =2\left( {{x}^{3}}-{{x}^{2}}+25x-25 \right) \\ & =2{{x}^{3}}-2{{x}^{2}}+50x-50 \end{align}$ Therefore, the polynomial equation is $2{{x}^{3}}-2{{x}^{2}}+50x-50$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.