Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 377: 29

Answer

The required ${{n}^{th}}$ degree polynomial function is ${{x}^{4}}+10{{x}^{2}}+9$.

Work Step by Step

The general linear equation is $f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)\left( x-{{c}_{4}} \right)$ , the roots are ${{c}_{1}}=i,{{c}_{2}}=-i,{{c}_{3}}=3i$ , and ${{c}_{4}}=-3i$. $\begin{align} & f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)\left( x-{{c}_{4}} \right) \\ & ={{a}_{n}}\left( x-i \right)\left( x+i \right)\left( x-3i \right)\left( x+3i \right) \\ & ={{a}_{n}}\left( {{x}^{4}}+10{{x}^{2}}+9 \right) \end{align}$ Now, compute the value of ${{a}_{n}}$ . Use $f\left( -1 \right)=20$ $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{4}}+10{{x}^{2}}+9 \right) \\ & 20={{a}_{n}}\left( {{\left( -1 \right)}^{4}}+10{{\left( -1 \right)}^{2}}+9 \right) \\ & 20={{a}_{n}}\left( 1+10+9 \right) \\ & {{a}_{n}}=1 \end{align}$ Substitute the value of ${{a}_{n}}$ in the linear equation. $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{4}}+10{{x}^{2}}+9 \right) \\ & =1\left( {{x}^{4}}+10{{x}^{2}}+9 \right) \\ & ={{x}^{4}}+10{{x}^{2}}+9 \end{align}$ Therefore, the polynomial equation is ${{x}^{4}}+10{{x}^{2}}+9$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.