Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.5 - Zeros of Polynomial Functions - Exercise Set - Page 377: 30

Answer

The required ${{n}^{th}}$ degree polynomial function is $2{{x}^{4}}+5{{x}^{3}}+4{{x}^{2}}+5x+2$.

Work Step by Step

The general linear equation is $f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)\left( x-{{c}_{4}} \right)$ , the roots are ${{c}_{1}}=-2,{{c}_{2}}=-\frac{1}{2},{{c}_{3}}=i$ , and ${{c}_{4}}=-i$. $\begin{align} & f\left( x \right)={{a}_{n}}\left( x-{{c}_{1}} \right)\left( x-{{c}_{2}} \right)\left( x-{{c}_{3}} \right)\left( x-{{c}_{4}} \right) \\ & ={{a}_{n}}\left( x+2 \right)\left( x+\frac{1}{2} \right)\left( x-i \right)\left( x+i \right) \\ & ={{a}_{n}}\left( {{x}^{4}}+\frac{5}{2}{{x}^{3}}+2{{x}^{2}}+\frac{5}{2}x+1 \right) \end{align}$ Now, compute the value of ${{a}_{n}}$. Use $f\left( 1 \right)=18$ $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{4}}+\frac{5}{2}{{x}^{3}}+2{{x}^{2}}+\frac{5}{2}x+1 \right) \\ & 18={{a}_{n}}\left( {{\left( 1 \right)}^{4}}+\frac{5}{2}{{\left( 1 \right)}^{3}}+2{{\left( 1 \right)}^{2}}+\frac{5}{2}\left( 1 \right)+1 \right) \\ & 18={{a}_{n}}\left( 1+\frac{5}{2}+2+\frac{5}{2}+1 \right) \\ & {{a}_{n}}=2 \end{align}$ Substitute the value of ${{a}_{n}}$ in the linear equation. $\begin{align} & f\left( x \right)={{a}_{n}}\left( {{x}^{4}}+\frac{5}{2}{{x}^{3}}+2{{x}^{2}}+\frac{5}{2}x+1 \right) \\ & =2\left( {{x}^{4}}+\frac{5}{2}{{x}^{3}}+2{{x}^{2}}+\frac{5}{2}x+1 \right) \\ & =2{{x}^{4}}+5{{x}^{3}}+4{{x}^{2}}+5x+2 \end{align}$ Therefore, the polynomial equation is $2{{x}^{4}}+5{{x}^{3}}+4{{x}^{2}}+5x+2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.