Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Concept and Vocabulary Check - Page 363: 3

Answer

For the long division problem $5x-2\overset{2{{x}^{2}}}{\overline{\left){10{{x}^{3}}+6{{x}^{2}}-9x+10}\right.}}$ , the next step is to multiply $2{{x}^{2}}$ and $5x-2$. Obtain $10{{x}^{3}}-4{{x}^{2}}$. Write this result below $10{{x}^{3}}+6{{x}^{2}}$.

Work Step by Step

Let us consider, $5x-2\overset{2{{x}^{2}}}{\overline{\left){10{{x}^{3}}+6{{x}^{2}}-9x+10}\right.}}$. Dividend: $10{{x}^{3}}+6{{x}^{2}}-9x+10$. Divisor: $5x-2$. We divide: $5x-2\overset{2{{x}^{2}}+2x-1}{\overline{\left){\begin{align} & 10{{x}^{3}}+6{{x}^{2}}-9x+10 \\ & \underline{10{{x}^{3}}-4{{x}^{2}}} \\ & \text{ }10{{x}^{2}}-9x \\ & \text{ }\underline{10{{x}^{2}}-4x} \\ & \text{ }-5x+10 \\ & \text{ }\underline{-5x+2} \\ & \text{ }8 \\ \end{align}}\right.}}$ Thus, the next step is to multiply $2{{x}^{2}}$ and $5x-2$ to obtain $10{{x}^{3}}-4{{x}^{2}}$. Write this result below $10{{x}^{3}}+6{{x}^{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.