Answer
For the long division problem $3x-1\overline{\left){6{{x}^{3}}+7{{x}^{2}}+12x-5}\right.}$ , begin the division process by dividing $6{{x}^{3}}$ by $3x$. We obtain $2{{x}^{2}}$. Write this result above $7{{x}^{2}}$ in the dividend.
Work Step by Step
Let us consider,
$3x-1\overline{\left){6{{x}^{3}}+7{{x}^{2}}+12x-5}\right.}$.
And the dividend:
$6{{x}^{3}}+7{{x}^{2}}+12x-5$.
Divisor:
$3x-1$.
We divide:
$3x-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 6{{x}^{3}}+7{{x}^{2}}+12x-5 \\
& \underline{6{{x}^{3}}-2{{x}^{2}}} \\
& \text{ }9{{x}^{2}} \\
\end{align}}\right.}}$
Thus, $2{{x}^{2}}$ is written above $7{{x}^{2}}$ in the dividend.