Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Concept and Vocabulary Check - Page 363: 7

Answer

To divide ${{x}^{3}}+5{{x}^{2}}-7x+1$ by $x-4$ using synthetic division, the first step is to write $\left. {\underline {\, 4 \,}}\! \right| $ , $1$ , $5$ , $-7$ , $1$.

Work Step by Step

Let us consider, $x-4\overline{\left){{{x}^{3}}+5{{x}^{2}}-7x+1}\right.}$. And the coefficient of dividend is: $\underbrace{1}_{\text{coe}\text{. of }{{x}^{3}}}\text{ }\underbrace{5}_{\text{coe}\text{. of }{{x}^{2}}}\text{ }\underbrace{-7}_{\text{coe}\text{. of }{{x}^{1}}}\text{ }\underbrace{1}_{\text{coe}\text{. of }{{x}^{0}}}$. And the constant for the divisor is: $x-\text{c}=x-4\Rightarrow \text{c}=4$. We know that according to the synthetic division procedure, the first step is $\left. {\underline {\, 4 \,}}\! \right| \text{ }1\text{ }5\text{ }-7\text{ }1$. Thus, the first step is to write $\left. {\underline {\, 4 \,}}\! \right| $ $1$ $5$ $-7$ $1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.