Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Concept and Vocabulary Check - Page 363: 5

Answer

For the long division problem $2x+1\overset{3x-5}{\overline{\left){\begin{align} & 6{{x}^{2}}-7x+4 \\ & \underline{6{{x}^{2}}+3x} \\ & \text{ }-10x+4 \\ & \text{ }\underline{-10x-5}\text{ } \\ \end{align}}\right.}}$, the last term is $9$. Thus, the quotient is $3x-5$ and the remainder is $9$. The answer to this long division problem is $\left( 3x-5 \right)+\frac{9}{2x+1}$.

Work Step by Step

Let us consider, $2x+1\overset{3x-5}{\overline{\left){\begin{align} & 6{{x}^{2}}-7x+4 \\ & \underline{6{{x}^{2}}+3x} \\ & \text{ }-10x+4 \\ & \text{ }\underline{-10x-5}\text{ } \\ \end{align}}\right.}}$ Dividend: $6{{x}^{2}}-7x+4$ Divisor: $2x+1$ We divide: $2x+1\overset{3x-5}{\overline{\left){\begin{align} & 6{{x}^{2}}-7x+4 \\ & \underline{6{{x}^{2}}+3x} \\ & \text{ }-10x+4 \\ & \text{ }\underline{-10x-5} \\ & \text{ }9\text{ } \\ \end{align}}\right.}}$ Thus, the last term is $9$. And the quotient is $3x-5$ and the remainder is $9$. The answer to this long division problem is $\left( 3x-5 \right)+\frac{9}{2x+1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.