Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Concept and Vocabulary Check - Page 363: 9

Answer

The required solution is True.

Work Step by Step

We know that according to the synthetic division theorem, $\begin{align} & \left. {\underline {\, -1 \,}}\! \right| \text{ }3\text{ }-4\text{ }2\text{ }-1 \\ & \text{ }\underline{\text{ }-3\text{ }7\text{ }-9} \\ & \text{ }\underbrace{3}_{\text{coe}\text{. of }{{x}^{2}}}\text{ }\underbrace{-7}_{\text{coe}\text{. of }{{x}^{1}}}\text{ }\underbrace{9}_{\text{coe}\text{. of }{{x}^{0}}}\text{ }\underbrace{-10}_{\text{Remainder}} \\ \end{align}$. Thus, $\begin{align} & \left. {\underline {\, -1 \,}}\! \right| \text{ }3\text{ }-4\text{ }2\text{ }-1 \\ & \text{ }\underline{\text{ }-3\text{ }7\text{ }-9} \\ & \text{ }3\text{ }-7\text{ }9\text{ }-10 \\ \end{align}$ Implies: $\frac{3{{x}^{3}}-4{{x}^{2}}+2x-1}{x+1}=\left( 3{{x}^{2}}-7x+9 \right)-\frac{10}{x+1}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.