Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Concept and Vocabulary Check - Page 363: 4

Answer

For the long division problem $3x-5\overset{2x}{\overline{\left){\begin{align} & 6{{x}^{2}}+8x-4 \\ & \underline{6{{x}^{2}}-10x} \\ \end{align}}\right.}}$ the next step is to subtract $6{{x}^{2}}-10x$ from $6{{x}^{2}}+8x$ to obtain $18x$. Then bring down $-4$ and form the new dividend $18x-4$.

Work Step by Step

Let us consider, $3x-5\overset{2x}{\overline{\left){\begin{align} & 6{{x}^{2}}+8x-4 \\ & \underline{6{{x}^{2}}-10x} \\ \end{align}}\right.}}$ And dividend: $6{{x}^{2}}+8x-4$. Divisor: $3x-5$. We divide: $3x-5\overset{2x+6}{\overline{\left){\begin{align} & 6{{x}^{2}}+8x-4 \\ & \underline{6{{x}^{2}}-10x} \\ & \text{ }18x-4 \\ & \text{ }\underline{18x-30} \\ & \text{ }26 \\ \end{align}}\right.}}$ Thus, the next step is to subtract $6{{x}^{2}}-10x$ from $6{{x}^{2}}+8x$ to obtain $18x$. Then bring down $-4$ and form the new dividend $18x-4$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.