Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Concept and Vocabulary Check - Page 363: 8

Answer

To divide $4{{x}^{3}}-8x-2$ by $x+5$ using synthetic division, the first step is to write $\left. {\underline {\, -5 \,}}\! \right| $ , $4$ , $0$ , $-8$ , $-2$.

Work Step by Step

Let us consider, $x+5\overline{\left){4{{x}^{3}}-8x-2}\right.}$. And the coefficient of the dividend is: $\underbrace{4}_{\text{coe}\text{. of }{{x}^{3}}}\text{ }\underbrace{0}_{\text{coe}\text{. of }{{x}^{2}}}\text{ }\underbrace{-8}_{\text{coe}\text{. of }{{x}^{1}}}\text{ }\underbrace{-2}_{\text{coe}\text{. of }{{x}^{0}}}$. And the constant for the divisor is: $x-\text{c}=x+5\Rightarrow \text{c}=-5$. We know that according to the synthetic division procedure, the first step is: $\left. {\underline {\, -5 \,}}\! \right| \text{ }4\text{ }0\text{ }-8\text{ }-2$. Thus, the first step is to write $\left. {\underline {\, -5 \,}}\! \right| $ $4$ $0$ $-8$ $-2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.