Answer
$ a_{1}=\dfrac{1}{2};a_2=\dfrac{1}{4};a_3=\dfrac{1}{8};a_4=\dfrac{1}{16};a_5=\dfrac{1}{32}$
Work Step by Step
The general formula to find the nth term of a Geometric sequence is given as: $ a_{n}=a_1r^{n-1}$
Here, $ a_n=\dfrac{1}{2}(\dfrac{1}{2})^{n-1}$
Plug $ n=1,2,3,4,5$
$ a_{1}=\dfrac{1}{2}(\dfrac{1}{2})^{1-1}=\dfrac{1}{2};a_2=\dfrac{1}{2}(\dfrac{1}{2})^{2-1}=\dfrac{1}{4};a_3=\dfrac{1}{2}(\dfrac{1}{2})^{3-1}=\dfrac{1}{8};a_4\dfrac{1}{2}(\dfrac{1}{2})^{4-1}=\dfrac{1}{16};a_5=\dfrac{1}{2}(\dfrac{1}{2})^{5-1}=\dfrac{1}{32}$
So, the first $5$ terms of the sequence are
$ a_{1}=\dfrac{1}{2};a_2=\dfrac{1}{4};a_3=\dfrac{1}{8};a_4=\dfrac{1}{16};a_5=\dfrac{1}{32}$