Answer
See the full explanation below.
Work Step by Step
We have to plot the graph of the functions with the help of the points individually for $f\left( x \right)$ and $g\left( x \right)$.
The co-ordinates of $f\left( x \right)$ for $x=0,1,4,9$ are as follows:
Put $x=0$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =0
\end{align}$
Put $x=1$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =\sqrt{1} \\
& =1
\end{align}$
Put $x=4$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =\sqrt{4} \\
& =2
\end{align}$
Put $x=9$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =\sqrt{9} \\
& =3
\end{align}$
The co-ordinates of $g\left( x \right)=\sqrt{x+2}$ for $x=-2,-1,2,7$ are as follows:
Put $x=-2$
$\begin{align}
& g\left( x \right)=\sqrt{x+2} \\
& =\sqrt{-2+2} \\
& =0
\end{align}$
Put $x=-1$
$\begin{align}
& g\left( x \right)=\sqrt{x+2} \\
& =\sqrt{-1+2} \\
& =\sqrt{1} \\
& =1
\end{align}$
Put $x=2$
$\begin{align}
& g\left( x \right)=\sqrt{x+2} \\
& =\sqrt{2+2} \\
& =\sqrt{4} \\
& =2
\end{align}$
Put $x=7$
$\begin{align}
& g\left( x \right)=\sqrt{x+2} \\
& =\sqrt{7+2} \\
& =\sqrt{9} \\
& =3
\end{align}$