Answer
.
Work Step by Step
We plot the graphs for $f\left( x \right)={{x}^{2}}$ and $g\left( x \right)={{x}^{2}}+1$ with the help of the points individually for $f\left( x \right)$ and $g\left( x \right)$.
The coordinates of $f\left( x \right)$ for $x=-2$ to $x=2$ are as follows:
$\begin{align}
& x=-2 \\
& f\left( x \right)={{x}^{2}} \\
& ={{\left( -2 \right)}^{2}} \\
& =4
\end{align}$
$\begin{align}
& x=-1 \\
& f\left( x \right)={{x}^{2}} \\
& ={{\left( -1 \right)}^{2}} \\
& =1
\end{align}$
$\begin{align}
& x=0 \\
& f\left( x \right)={{x}^{2}} \\
& ={{\left( 0 \right)}^{2}} \\
& =0
\end{align}$
$\begin{align}
& x=1 \\
& f\left( x \right)={{x}^{2}} \\
& ={{\left( 1 \right)}^{2}} \\
& =1
\end{align}$
$\begin{align}
& x=2 \\
& f\left( x \right)={{x}^{2}} \\
& ={{\left( 2 \right)}^{2}} \\
& =4
\end{align}$
The coordinates of $g\left( x \right)={{x}^{2}}+1$ for $x=-2$ to $x=2$ are as follows:
$\begin{align}
& x=-2 \\
& g\left( x \right)={{x}^{2}}+1 \\
& ={{\left( -2 \right)}^{2}}+1 \\
& =5
\end{align}$
$\begin{align}
& x=-1 \\
& g\left( x \right)={{x}^{2}}+1 \\
& ={{\left( -1 \right)}^{2}}+1 \\
& =2
\end{align}$
$\begin{align}
& x=0 \\
& g\left( x \right)={{x}^{2}}+1 \\
& ={{\left( 0 \right)}^{2}}+1 \\
& =1
\end{align}$
$\begin{align}
& x=1 \\
& g\left( x \right)={{x}^{2}}+1 \\
& ={{\left( 1 \right)}^{2}}+1 \\
& =2
\end{align}$
$\begin{align}
& x=2 \\
& g\left( x \right)={{x}^{2}}+1 \\
& ={{\left( 2 \right)}^{2}}+1 \\
& =5
\end{align}$