Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.2 - Basics of Functions and Their Graphs - Exercise Set - Page 176: 35

Answer

a) $\frac{15}{4}$ b) $\frac{15}{4}$ c) $\frac{4{{x}^{2}}-1}{{{x}^{2}}}$

Work Step by Step

(a) Let us consider the function $f\left( x \right)=\frac{4{{x}^{2}}-1}{{{x}^{2}}}$. By putting the value of $x$ as $2$ in the equation of $f\left( x \right)$ we obtain the value of $f\left( 2 \right)$ as $\begin{align} & f\left( x \right)=\frac{4{{x}^{2}}-1}{{{x}^{2}}} \\ & f\left( 2 \right)=\frac{4\cdot \left( {{2}^{2}} \right)-1}{{{2}^{2}}} \\ & =\frac{16-1}{4} \\ & =\frac{15}{4} \end{align}$ Therefore, the value of $f\left( 2 \right)$ is $\frac{15}{4}$. (b) Let us consider the function $f\left( x \right)=\frac{4{{x}^{2}}-1}{{{x}^{2}}}$. By putting the value of $x$ as $-2$ in the equation of $f\left( x \right)$ we obtain the value of $f\left( -2 \right)$ as $\begin{align} & f\left( x \right)=\frac{4{{x}^{2}}-1}{{{x}^{2}}} \\ & f\left( -2 \right)=\frac{4\cdot {{\left( -2 \right)}^{2}}-1}{{{\left( -2 \right)}^{2}}} \\ & =\frac{16-1}{4} \\ & =\frac{15}{4} \end{align}$ Hence, the value of $f\left( -2 \right)$ is $\frac{15}{4}$. (c) Let us consider the function $f\left( x \right)=\frac{4{{x}^{2}}-1}{{{x}^{2}}}$. By putting the value of $x$ as $-x$ in the equation of $f\left( x \right)$ we obtain the value of $f\left( -x \right)$ as $\begin{align} & f\left( x \right)=\frac{4{{x}^{2}}-1}{{{x}^{2}}} \\ & f\left( -x \right)=\frac{4\cdot {{\left( -x \right)}^{2}}-1}{{{\left( -x \right)}^{2}}} \\ & =\frac{4{{x}^{2}}-1}{{{x}^{2}}} \end{align}$ Hence, the value of $f\left( -x \right)$ is $\frac{4{{x}^{2}}-1}{{{x}^{2}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.