Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.2 - Basics of Functions and Their Graphs - Exercise Set - Page 176: 38

Answer

a) $1$ b) $-1$ c) $-\frac{\left| 6+x \right|}{\left( 6+x \right)}$

Work Step by Step

(a) Let us consider the function $f\left( x \right)=\frac{\left| x+3 \right|}{x+3}$. By putting the value of $x$ as $5$ in the equation of $f\left( x \right)$ we obtain the value of $f\left( 5 \right)$ as: $\begin{align} & f\left( x \right)=\frac{\left| x+3 \right|}{x+3} \\ & f\left( 5 \right)=\frac{\left| 5+3 \right|}{5+3} \\ & =\frac{\left| 8 \right|}{8} \\ & =1 \end{align}$ Hence, the value of $f\left( 5 \right)$ is $1$. (b) Let us consider the function $f\left( x \right)=\frac{\left| x+3 \right|}{x+3}$. By putting the value of $x$ as $-5$ in the equation of $f\left( x \right)$ we obtain the value of $f\left( -5 \right)$ as: $\begin{align} & f\left( x \right)=\frac{\left| x+3 \right|}{x+3} \\ & f\left( -5 \right)=\frac{\left| -5+3 \right|}{-5+3} \\ & =\frac{\left| -2 \right|}{-2} \\ & =-1 \end{align}$ Hence, the value of $f\left( -5 \right)$ is $-1$. (c) Let us consider the function $f\left( x \right)=\frac{\left| x+3 \right|}{x+3}$. By putting the value of $x$ as $-9-x$ in the equation of $f\left( x \right)$ we obtain the value of $f\left( -9-x \right)$ as: $\begin{align} & f\left( x \right)=\frac{\left| x+3 \right|}{x+3} \\ & f\left( -9-x \right)=\frac{\left| -9-x+3 \right|}{-9-x+3} \\ & =\frac{\left| -6-x \right|}{-6-x} \\ & =-\frac{\left| 6+x \right|}{\left( 6+x \right)} \end{align}$ Hence, the value of $f\left( -9-x \right)$ is $-\frac{\left| 6+x \right|}{\left( 6+x \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.