Answer
See the full explanation below.
Work Step by Step
We have to plot the graph of the functions with the help of the points individually for $f\left( x \right)$ and $g\left( x \right)$.
The co-ordinates of $f\left( x \right)$ for $x=0,1,4,9$ are as follows:
Put $x=0$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =0
\end{align}$
Put $x=1$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =\sqrt{1} \\
& =1
\end{align}$
Put $x=4$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =\sqrt{4} \\
& =2
\end{align}$
Put $x=9$
$\begin{align}
& f\left( x \right)=\sqrt{x} \\
& =\sqrt{9} \\
& =3
\end{align}$
The co-ordinates of $g\left( x \right)=\sqrt{x}+2$ for $x=0,1,4,9$ are as follows:
Put $x=0$
$\begin{align}
& g\left( x \right)=\sqrt{x}+2 \\
& =0+2 \\
& =2
\end{align}$
Put $x=1$
$\begin{align}
& g\left( x \right)=\sqrt{x}+2 \\
& =\sqrt{1}+2 \\
& =1+2 \\
& =3
\end{align}$
Put $x=4$
$\begin{align}
& g\left( x \right)=\sqrt{x}+2 \\
& =\sqrt{4}+2 \\
& =2+2 \\
& =4
\end{align}$
Put $x=9$
$\begin{align}
& g\left( x \right)=\sqrt{x}+2 \\
& =\sqrt{9}+2 \\
& =3+2 \\
& =5
\end{align}$