Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.5 Properties of Logarithms - 5.5 Assess Your Understanding - Page 306: 90

Answer

$y=\dfrac{Cx^2}{x+1}$

Work Step by Step

We know that: (1) $\log_a {x^n}=n\cdot \log_a {x}$; (2) $\log_a {x}+\log_a {y}=\log_a {(x\cdot y)}$; and (3) $\log_a {x}-\log_a {y}=\log_a {(\frac{x}{y})}$ Use the rules above to obtain: $\ln{y}=\ln{(x^2)}-\ln{(x+1)}+\ln{(C)}\\ \ln{y}=\ln{\left(\frac{x^2}{x+1}\right)}+\ln{C}\\ \ln{y}=\ln{\left(\frac{x^2(C)}{x+1}\right)}\\ \ln{y}=\ln{\left(\frac{Cx^2}{x+1}\right)} $ Use the rule $\log_a{M}=\log_a{N} \longrightarrow M=N$ to obtain $y=\frac{Cx^2}{x+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.