Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.5 Properties of Logarithms - 5.5 Assess Your Understanding - Page 306: 109

Answer

Let $M=a^y$ and $N=a^z$, which implies $\log_a{M}=y$ and $\log_a{N}=z$. Therefore $\log_a{\frac{M}{N}}=\log_a{\frac{a^y}{a^z}}=\log_a{a^{y-z}}=y-z=\log_a{M}-\log_a{N}.$

Work Step by Step

Let $M=a^y$ and $N=a^z$, which implies $\log_a{M}=y$ and $\log_a{N}=z$. Therefore $\log_a{\frac{M}{N}}=\log_a{\frac{a^y}{a^z}}=\log_a{a^{y-z}}=y-z=\log_a{M}-\log_a{N}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.