Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.3 Systems of Linear Equations: Determinants - 11.3 Assess Your Understanding - Page 742: 36

Answer

$(x,y,z) =\left(3,-\frac{8}{3},\frac{1}{9}\right)$

Work Step by Step

The given system of equations is $\left\{\begin{matrix} x& +4y &-3z&=&-8\\ 3x& -y & +3z&=&12\\ x& +y &+6z &=&1 \end{matrix}\right.$ The formula to determine the determinant is $D=\begin{vmatrix} a& b &c \\ d& e &f \\ g &h &i \end{vmatrix}=a\begin{vmatrix} e& f \\ h&i \end{vmatrix}-b\begin{vmatrix} d& f \\ g&i \end{vmatrix}+c\begin{vmatrix} d& e \\ g&h \end{vmatrix}$ Determinant $D$ consists of the $x,y$ and $z$ coefficients. $D=\begin{vmatrix} 1&4 &-3 \\ 3& -1 &3 \\ 1&1 &6 \end{vmatrix}=-81$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} -8&4 &-3 \\ 12& -1 &3 \\ 1&1 &6 \end{vmatrix}=-243$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 1&-8 &-3 \\ 3& 12 &3 \\ 1&1 &6 \end{vmatrix}=216$ For determinant $D_z$ replace the $z−$ coefficients with the constants. $D_z=\begin{vmatrix} 1&4 &-8 \\ 3& -1 &12 \\ 1&1 &1 \end{vmatrix}=-9$ By using Cramer's rule we have. $x=\dfrac{D_x}{D}=\dfrac{-243}{-81}=3$ and $y=\dfrac{D_y}{D}=\dfrac{216}{-81}=-\dfrac{8}{3}$ and $z=\dfrac{D_z}{D}=\dfrac{-9}{-81}=\dfrac{1}{9}$ Hence, the solution set is $(x,y,z) =\left(3,-\frac{8}{3},\frac{1}{9}\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.