Answer
$-169.$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=1(1\cdot3-(-5)\cdot2)-3(6\cdot3-(-5)\cdot8)+(-2)(6\cdot2-1\cdot8)=1(13)-3(58)+(-2)(4)=13-174-8=-169.$