Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.3 Systems of Linear Equations: Determinants - 11.3 Assess Your Understanding - Page 742: 32

Answer

$(x,y) =\left(\frac{1}{2},2\right)$

Work Step by Step

The given system of equations is $\left\{\begin{matrix} 2x& -&y&=&-1\\ x&+&\frac{1}{2}y & =&\frac{3}{2} \end{matrix}\right.$ Determinant $D$ consists of the $x$ and $y$ coefficients. $D=\begin{vmatrix} 2&-1 \\ 1& \frac{1}{2} \end{vmatrix}=(2)(\frac{1}{2})-(1)(-1)=1+1=2$ For determinant $D_x$ replace the $x−$ coefficients with the constants. $D_x=\begin{vmatrix} -1&-1 \\ \frac{3}{2}& \frac{1}{2} \end{vmatrix}=(-1)(\frac{1}{2})-(\frac{3}{2})(-1)=-\frac{1}{2}+\frac{3}{2}=1$ For determinant $D_y$ replace the $y−$ coefficients with the constants. $D_y=\begin{vmatrix} 2&-1 \\ 1& \frac{3}{2} \end{vmatrix}=(2)(\frac{3}{2})-(1)(-1)=3+1=4$ By using Cramer's rule we have. $x=\dfrac{D_x}{D}=\dfrac{1}{2}=\dfrac{1}{2}$ and $y=\dfrac{D_y}{D}=\dfrac{4}{2}=2$ Hence, the solution set is $(x,y) =\left(\frac{1}{2},2\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.