Answer
$-119$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant, $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=3(4\cdot1-0\cdot(-3))-(-9)(1\cdot1-0\cdot8)+(4)(1\cdot(-3)-4\cdot8)=3(4)-(-9)(1)+(4)(-35)=12+9-140=-119.$