Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.2 Linear Equations in One Variable and Proportions - Exercise Set 6.2 - Page 363: 96

Answer

The value of \[{{x}^{2}}-\left( xy-y \right)\]is\[-5\].

Work Step by Step

The equation\[\frac{3x}{2}+\frac{3x}{4}=\frac{x}{4}-4\]. Subtract \[\frac{x}{4}\] from both sides, \[\begin{align} & \frac{3x}{2}+\frac{3x}{4}-\frac{x}{4}=\frac{x}{4}-4-\frac{x}{4} \\ & \frac{6x}{4}+\frac{3x}{4}-\frac{x}{4}=-4 \\ & \frac{6x+3x-x}{4}=-4 \\ & \frac{8x}{4}=-4 \\ \end{align}\] Apply cross-products principle, \[\begin{align} & 8x=-4\times 4 \\ & 8x=-16 \\ & x=-2 \\ \end{align}\] So, \[x=-2\] Next equation is \[5-y=7\left( y+4 \right)+1\]. Use distributive property, \[\begin{align} & 5-y=7y+28+1 \\ & 5-y=7y+29 \\ \end{align}\] Add \[y\]to both sides, \[\begin{align} & 5-y+y=7y+29+y \\ & 5=8y+29 \\ \end{align}\] Subtract \[29\] from both sides, \[\begin{align} & 5-29=8y+29-29 \\ & -24=8y \\ & y=-3 \\ \end{align}\] So, \[y=-3\] Now put \[x=-2\] and \[y=-3\] in the expression \[{{x}^{2}}-\left( xy-y \right)\]. \[\begin{align} & {{x}^{2}}-\left( xy-y \right)={{\left( -2 \right)}^{2}}-\left( -2\times -3-\left( -3 \right) \right) \\ & =4-\left( 6+3 \right) \\ & =4-9 \\ & =-5 \end{align}\] Therefore, value of \[{{x}^{2}}-\left( xy-y \right)\]is\[-5\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.