Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.2 Linear Equations in One Variable and Proportions - Exercise Set 6.2 - Page 363: 95

Answer

The value of \[{{x}^{2}}-\left( xy-y \right)\]is \[161\].

Work Step by Step

The equation\[\frac{x}{5}-2=\frac{x}{3}\]. Subtract \[\frac{x}{5}\] from both sides, \[\begin{align} & \frac{x}{5}-2-\frac{x}{5}=\frac{x}{3}-\frac{x}{5} \\ & -2=\frac{2x}{15} \\ \end{align}\] Apply cross-products principle, \[\begin{align} & -2\times 15=2x \\ & -30=2x \\ & \frac{-30}{2}=x \\ & -15=x \end{align}\] So, \[x=-15\] Next equation is\[-2y-10=5y+18\]. Add \[2y\]to both sides, \[\begin{align} & -2y-10+2y=5y+18+2y \\ & -10=7y+18 \\ \end{align}\] Subtract \[18\] from both sides, \[\begin{align} & -10-18=7y-18-18 \\ & -28=7y \\ & -4=y \\ \end{align}\] So, \[y=-4\] Now put \[x=-15\] and \[y=-4\] in the expression\[{{x}^{2}}-\left( xy-y \right)\]. \[\begin{align} & {{x}^{2}}-\left( xy-y \right)={{\left( -15 \right)}^{2}}-\left( -15\times -4-\left( -4 \right) \right) \\ & =225-\left( 60+4 \right) \\ & =225-64 \\ & =161 \end{align}\] Therefore, value of \[{{x}^{2}}-\left( xy-y \right)\]is \[161\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.