Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.2 Linear Equations in One Variable and Proportions - Exercise Set 6.2 - Page 363: 94

Answer

The value of \[{{x}^{2}}-x\]is \[6\].

Work Step by Step

The equation \[2\left( x-6 \right)=3x+2\left( 2x-1 \right)\]. Use the distributive property, \[a\left( b+c \right)=ab+ac\]. \[\begin{align} & 2x-12=3x+4x-2 \\ & 2x-12=7x-2 \\ \end{align}\] Add \[2\]to both side, \[\begin{align} & 2x-12+2=7x-2+2 \\ & 2x-10=7x \end{align}\] Subtract \[2x\] from both side, \[\begin{align} & 2x-2x-10=7x-2x \\ & -10=5x \end{align}\] Divided by 5 both side, \[\begin{align} & \frac{-10}{5}=\frac{5x}{5} \\ & -2=x \\ & x=-2 \\ \end{align}\] The solution set is \[\left\{ -2 \right\}\]. Check the proposed solution. Substitute \[-2\] for x in the original equation \[2\left( x-6 \right)=3x+2\left( 2x-1 \right)\]. \[\begin{align} & 2\left( -2-6 \right)=3\left( -2 \right)+2\left( 2\left( -2 \right)-1 \right) \\ & 2\left( -8 \right)=-6+2\left( -5 \right) \\ & -16=-6-10 \\ & -16=-16 \end{align}\] This true statement \[-16=-16\] verifies that the solution set is \[\left\{ -2 \right\}\]. Now put \[x=-2\] in the expression \[{{x}^{2}}-x\]. \[\begin{align} & {{x}^{2}}-x={{\left( -2 \right)}^{2}}-\left( -2 \right) \\ & =4+2 \\ & =6 \end{align}\] Therefore, value of \[{{x}^{2}}-x\]is \[6\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.