Answer
\[{{221}_{\text{five}}}\].
Work Step by Step
To divide numerals of same bases other than base ten, use the same method as in base ten numerals but use the given table for base five numerals. Now, solve the given numerals as:
\[\begin{align}
& {{3}_{\text{five}}}\overset{2}{\overline{\left){{{1213}_{\text{five}}}}\right.}} \\
& \text{ }\underline{11} \\
& \text{ }1 \\
\end{align}\]
Use the given table and express result as:
\[{{3}_{\text{five}}}\times {{2}_{\text{five}}}={{11}_{\text{five}}}\]
Here, choose a product which is less than or equal to the first column of dividend which is \[12\]. Therefore, choose \[11\] because \[14\]is greater.
Now, solve for other columns in a similar manner as:
\[\begin{align}
& {{3}_{\text{five}}}\overset{22}{\overline{\left){{{1213}_{\text{five}}}}\right.}} \\
& \text{ }\underline{\text{ }11} \\
& \text{ }11 \\
& \text{ }1\underset{\scriptscriptstyle-}{1} \\
& \text{ }0 \\
\end{align}\]
Again,
\[\begin{align}
& {{3}_{\text{five}}}\overset{221}{\overline{\left){{{1213}_{\text{five}}}}\right.}} \\
& \text{ }\underline{11} \\
& \text{ }11 \\
& \text{ }1\underset{\scriptscriptstyle-}{1} \\
& \text{ }03 \\
& \text{ }\underset{\scriptscriptstyle-}{3} \\
& \text{ }0 \\
\end{align}\]
The result is\[{{221}_{\text{five}}}\].