Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 4 - Number Representation and Calculation - Chapter 4 Test - Page 246: 18

Answer

\[{{250}_{\text{six}}}\].

Work Step by Step

To multiply numerals of same bases other than base ten,multiply unit digits first according to base 10 then convert them to their respective base. Then continue the same process for other digits.Solve the provided numerals as follows: \[\begin{align} & {{4}_{\text{six}}}\,\times {{3}_{\text{six}}}\,={{12}_{\text{ten}}} \\ & \,={{\left( 2\times 6 \right)}_{{}}}+\left( 0\times 1 \right) \\ & ={{20}_{\text{six}}} \end{align}\] Base ten product of \[4\times 3=12\]which is larger than base six. So, can be written as \[2\] times six and \[0\]times one. \[\begin{align} & \underline{\begin{align} & \overset{2}{\mathop{5}}\,{{4}_{\text{six}}} \\ & \times {{3}_{\text{six}}} \end{align}} \\ & \text{ }0 \\ \end{align}\] Now, \[\begin{align} & {{5}_{\text{six}}}\,\times {{3}_{\text{six}}}\,+{{2}_{\text{six}}}\,={{17}_{\text{ten}}} \\ & \,={{\left( 2\times 6 \right)}_{{}}}+\left( 5\times 1 \right) \\ & ={{25}_{\text{six}}} \end{align}\] Base ten product of \[5\times 3+2=17\]which is larger than base six.So, can be written as \[2\] times six and \[5\] times one. \[\begin{align} & \underline{\begin{align} & \overset{2}{\mathop{5}}\,{{4}_{\text{six}}} \\ & \times {{3}_{\text{six}}} \end{align}} \\ & 25{{0}_{\text{six}}} \end{align}\] Hence, the result is\[{{250}_{\text{six}}}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.