Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 4 - Number Representation and Calculation - Chapter 4 Test - Page 246: 16

Answer

The result is\[{{1212}_{\text{five}}}\].

Work Step by Step

To add numerals of same bases other than base ten, add unit digits first according to base 10 then convert them to their respective base. Then continue the same process for other digits. Solve the given numerals as follows: \[\begin{align} & {{4}_{\text{five}}}+{{3}_{\text{five}}}={{7}_{\text{ten}}} \\ & ={{\left( 1\times 5 \right)}_{\text{five}}}+{{\left( 2\times 1 \right)}_{\text{five}}} \\ & ={{12}_{\text{five}}} \end{align}\] Base ten sum of \[4+3=7\]which is larger than base five. So, it can be written as \[1\] time five and \[2\]times one. \[\begin{align} & \underline{\begin{align} & \overset{{}}{\mathop{\text{ }2}}\,\overset{1}{\mathop{3}}\,{{\overset{{}}{\mathop{4}}\,}_{\text{five}}} \\ & +{{423}_{five}} \\ \end{align}} \\ & \text{ }2 \end{align}\] Now, solve further as: \[\begin{align} & {{1}_{\text{five}}}\,+{{3}_{\text{five}}}+{{2}_{\text{five}}}\,={{6}_{\text{ten}}} \\ & \,={{\left( 1\times 5 \right)}_{\text{five}}}+{{\left( 1\times 1 \right)}_{\text{five}}} \\ & ={{11}_{\text{five}}} \end{align}\] Base ten sum of \[1+3+2=6\]which is larger than base five.So, it can be written as \[1\] time five and \[1\] time one. \[\begin{align} & \underline{\begin{align} & {{\overset{\text{ }1}{\mathop{\text{ 2}34}}\,}_{\text{five}}} \\ & +{{423}_{five}} \end{align}} \\ & \text{ }12 \end{align}\] Again, \[\begin{align} & {{1}_{\text{five}}}\,+{{2}_{\text{five}}}+{{4}_{\text{five}}}\,={{7}_{\text{ten}}} \\ & \,={{\left( 1\times 5 \right)}_{\text{five}}}+{{\left( 2\times 1 \right)}_{\text{five}}} \\ & ={{12}_{\text{five}}} \end{align}\] Base ten sum of \[1+2+4=7\]which is larger than base five. So, can be written as \[1\] time five and \[2\]times one. \[\begin{align} & \underline{\begin{align} & \,\overset{1}{\mathop{\,\,2}}\,\overset{1}{\mathop{3}}\,{{\overset{{}}{\mathop{4}}\,}_{\text{five}}} \\ & +{{423}_{five}} \end{align}} \\ & \,\,\,1\,\,2\,1\,2 \end{align}\] Hence, the result is\[{{1212}_{\text{five}}}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.