Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 4 - Number Representation and Calculation - Chapter 4 Test - Page 246: 17

Answer

The result is\[{{414}_{\text{seven}}}\].

Work Step by Step

To subtract numerals of the same base other than base ten, if the upper number is larger than a lower number then subtract normally. But if the upper number is smaller than a lower number then borrow base value from the previous number. Here, upper number \[2\]is smaller than a lower number \[5\]. So, borrow \[1\]from \[6\]. Now this one is equal to base size which is \[7\]. Add \[7+2=9\]and subtract normally \[9-5=4\] \[\begin{align} & \underline{\begin{align} & 5\overset{5}{\mathop{{}}}\,{{\overset{9}{\mathop{{}}}\,}_{\text{seven}}} \\ & -{{145}_{\text{seven}}} \end{align}} \\ & \text{ }4 \end{align}\] Now, subtract other digits in the same manner: \[\begin{align} & \underline{\begin{align} & \text{ }5\overset{5}{\mathop{{}}}\,{{\overset{9}{\mathop{{}}}\,}_{\text{seven}}} \\ & -1\text{ }4\text{ }{{5}_{\text{seven}}} \end{align}} \\ & \text{ }{{414}_{\text{seven}}} \end{align}\] Hence, the result is\[{{414}_{\text{seven}}}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.