Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 4 - Number Representation and Calculation - Chapter 4 Test - Page 246: 14

Answer

The base two-numeral is\[{{111000}_{two}}\].

Work Step by Step

To convert base ten numeral to any other base,divide given numeral with the greatest number in the power of base value as shown below: \[32\overset{1}{\overline{\left){\begin{align} & 56 \\ & \underline{32} \\ & 24 \\ \end{align}}\right.}}\] Now, divide 24 by 16: \[16\overset{1}{\overline{\left){\begin{align} & 24 \\ & \underline{16} \\ & 8 \\ \end{align}}\right.}}\] Divide 8 by 8: \[8\overset{1}{\overline{\left){\begin{align} & 8 \\ & {\underset{\scriptscriptstyle-}{8}} \\ & 0 \\ \end{align}}\right.}}\] Here, the base value of resultant numeral is \[2\].So, powers of base numerals are \[{{2}^{0}},\,{{2}^{1}},\,{{2}^{2}},\,{{2}^{3}},....\]which can be written as\[1,\,2,4,8,16,32,....\]when solved. Now, use the quotients of each division base ten numeral can be found as follows:\[\begin{align} & 1\times 32\,+1\times 16\,+1\times 8\,+0\times 4+\,0\times 2+0\times \,1\,=1\times {{2}^{5\,}}+\,1\times {{2}^{4}}\,+1\times {{2}^{3}}\,+0\times {{2}^{2}}+0\times {{2}^{1}}+0\times {{2}^{0}} \\ & ={{111000}_{\text{two}}} \end{align}\] The base two-numeral is\[{{111000}_{two}}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.