Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 4 - Number Representation and Calculation - Chapter 4 Test - Page 246: 13

Answer

The base three numeral for the provided base ten numeral is\[{{2212}_{\text{three}}}.\]

Work Step by Step

To convert base ten numeral to any other base,divide given numeral with greatest number in the power of base value as follows: \[27\overset{2}{\overline{\left){\begin{align} & 77 \\ & \underline{54} \\ & 23 \\ \end{align}}\right.}}\] Divide 23 by 9: \[9\overset{2}{\overline{\left){\begin{align} & 23 \\ & \underline{18} \\ & \text{ }5 \\ \end{align}}\right.}}\] Divide 5 by 3: \[3\overset{1}{\overline{\left){\begin{align} & 5 \\ & {\underset{\scriptscriptstyle-}{3}} \\ & 2 \\ \end{align}}\right.}}\] Here, the base value of resultant numeral is \[3\]. So, powers of base numerals are \[{{3}^{0}},\,{{3}^{1}},\,{{3}^{2}},\,{{3}^{3}},....\]which can be written as\[1,\,\,3,\,\,9,\,\,27,....\]when solved. Now, use the quotients of each division, base ten numeral can be found as follows:\[\begin{align} & 2\times 27\,+2\times 9\,+1\times 3\,+2\times 1\,=2\times {{3}^{3\,}}+\,2\times {{3}^{2}}\,+1\times {{3}^{1}}\,+2\times {{3}^{0}} \\ & ={{2212}_{\text{three}}} \end{align}\] Hence, the base three numeral for the provided base ten numeral is\[{{2212}_{\text{three}}}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.