Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 4 - Number Representation and Calculation - Chapter 4 Test - Page 246: 15

Answer

The base five Numeral is\[{{24334}_{\text{five}}}\].

Work Step by Step

To convert base ten numeral to any other base,divide provided numeral with the greatest number in the power base value as shown below: \[625\overset{2}{\overline{\left){\begin{align} & 1844 \\ & \underline{1250} \\ & \text{ }594 \\ \end{align}}\right.}}\] Now, divide 594 by 125: \[125\overset{4}{\overline{\left){\begin{align} & 594 \\ & \underline{500} \\ & \text{ }94 \\ \end{align}}\right.}}\] Divide 94 by 25: \[25\overset{3}{\overline{\left){\begin{align} & 94 \\ & \underline{75} \\ & 19 \\ \end{align}}\right.}}\] Divide 19 by 5: \[5\overset{3}{\overline{\left){\begin{align} & 19 \\ & \underline{15} \\ & 4 \\ \end{align}}\right.}}\] Here,base value of resultant numeral is \[5\].So, powers of base numerals are \[{{5}^{0}},\,{{5}^{1}},\,{{5}^{2}},\,{{5}^{3}},....\]which can be written as\[1,\,\,5,\,\,25,\,\,125,\,\,625,....\]when solved. Now, use the quotients of each division based ten numerals can be found as follows:\[\begin{align} & 2\times 625\,+4\times 125\,+3\times 25\,+3\times 5+\,4\times 1\,=2\times {{5}^{4\,}}+\,4\times {{5}^{3}}\,+3\times {{5}^{2}}\,+3\times {{5}^{1}}+4\times {{5}^{0}} \\ & ={{24334}_{\text{five}}} \end{align}\] The base five Numeral is\[{{24334}_{\text{five}}}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.