University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.9 - Convergence of Taylor Series - Exercises - Page 542: 8

Answer

$3x^4-\dfrac{27x^{12}}{3}+\dfrac{243x^{20}}{5}-\dfrac{2187x^{28}}{7}$

Work Step by Step

Since, we know that the Maclaurin Series for $\tan^{-1} x$ is defined as: $ \tan^{-1} x=\Sigma_{n=0}^\infty (-1)^n\dfrac{x^{2n+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...$ Now, $ \tan^{-1} (3x^4)=(3x^4)-\dfrac{(3x^4)^3}{3!}+\dfrac{(3x^4)^5}{5!}-\dfrac{(3x^4)^7}{7!}+...$ or, $=3x^4-\dfrac{27x^{12}}{3}+\dfrac{243x^{20}}{5}-\dfrac{2187x^{28}}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.