University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.9 - Convergence of Taylor Series - Exercises - Page 542: 39

Answer

Error $\lt 1.67 \times 10^{-10}$

Work Step by Step

The Taylor series for $\sin x $ can be defined as: $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-....$ and $\sin x= x-\dfrac{x^3}{6}+\dfrac{ x^5}{120}-....$ We need to find $ x $. $|\dfrac{x^3}{6}| \lt |\dfrac{(10^{-3})^3}{6}| $ or, $|\dfrac{x^3}{6}| \lt |\dfrac{(10^{-3})^3}{6}| = \dfrac{10^{-9}}{6}$ or, Error $\lt |\dfrac{(10^{-3})^3}{3 !}| \approx 1.67 \times 10^{-10}$ or, Error $\lt 1.67 \times 10^{-10}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.