University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.9 - Convergence of Taylor Series - Exercises - Page 542: 11

Answer

$x+x^2+\dfrac{x^3}{2!}+\dfrac{x^4}{3!}+\dfrac{x^5}{4!}+...$

Work Step by Step

Since, we know that the Maclaurin Series for $e^x$ is defined as: $e^x=\Sigma_{n=0}^\infty \dfrac{x^n}{n!}=1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!}+...$ Now, $xe^x=x(1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\dfrac{x^4}{4!}+...)$ or, $=x+x^2+\dfrac{x^3}{2!}+\dfrac{x^4}{3!}+\dfrac{x^5}{4!}+...$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.