Answer
$\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\dfrac{x^8}{8!}-\dfrac{x^{10}}{10!}+...$
Work Step by Step
Since, we know that the Maclaurin Series for $\cos x$ is defined as:
$ \cos x=\Sigma_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+...$
Now, $\dfrac{x^2}{2}-1+\cos x=\dfrac{x^2}{2}-1+1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+...$
or, $=\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\dfrac{x^8}{8!}-\dfrac{x^{10}}{10!}+...$