University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.9 - Convergence of Taylor Series - Exercises - Page 542: 4

Answer

$\dfrac{\pi x}{2}+\dfrac{\pi^3}{2^3 \cdot 3!}x^3-\dfrac{\pi^5}{2^5 \cdot 5!}x^5-\dfrac{\pi^7}{2^7 \cdot 7!}x^7+...$

Work Step by Step

Since, we know that the Maclaurin Series for $\sin{x}$ is defined as: $ \sin x=\Sigma_{n=0}^\infty \dfrac{(-1)^n x^{2n+1}}{(2n+1)!}=x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+...$ Now, $ \sin(\dfrac{\pi x}{2})=(\dfrac{\pi x}{2})-\dfrac{(\dfrac{\pi x}{2})^3}{3!}+\dfrac{(\dfrac{\pi x}{2})^5}{5!}-\dfrac{(\dfrac{\pi x}{2})^7}{7!}+...]$ or, $=\dfrac{\pi x}{2}+\dfrac{\pi^3}{2^3 \cdot 3!}x^3-\dfrac{\pi^5}{2^5 \cdot 5!}x^5-\dfrac{\pi^7}{2^7 \cdot 7!}x^7+...$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.