University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.9 - Convergence of Taylor Series - Exercises - Page 542: 33

Answer

$$1+x+\dfrac{x^2}{2}-\dfrac{x^4}{8}+....$$

Work Step by Step

The Taylor series for $\sin x $ can be defined as: $\sin x= x-\dfrac{x^3}{3!}+\dfrac{ x^5}{5!}-....$ We have $ e^{\sin x} =1+\sin x+\dfrac{(\sin x)^2}{2!}+.....$ or, $=1+(x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-....) +\dfrac{1}{2 !} (x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-....) +....$ or, $=1+x+\dfrac{x^2}{2}-\dfrac{x^4}{8}+....$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.