University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.9 - Convergence of Taylor Series - Exercises - Page 542: 5

Answer

$1-\dfrac{5^2}{2!}x^4+\dfrac{5^4}{4!}x^8-\dfrac{5^6}{6!}x^{12}...$

Work Step by Step

Since, we know that the Maclaurin Series for $\cos{x}$ is defined as: $ \cos x=\Sigma_{n=0}^\infty \dfrac{(-1)^n x^{2n}}{(2n)!}=1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+...$ Now, $ \cos(5x^2)=1-\dfrac{(5x^2)^2}{2!}+\dfrac{(5x^2)^4}{4!}-\dfrac{(5x^2)^6}{6!}+...$ or, $=1-\dfrac{5^2}{2!}x^4+\dfrac{5^4}{4!}x^8-\dfrac{5^6}{6!}x^{12}...$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.