University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.3 - Polar Coordinates - Exercises - Page 577: 9

Answer

$a.\quad (-3\sqrt{2},5\pi/4)$ $b.\quad (-1,0)$ $c.\quad (-2,5\pi/3)$ $d.\displaystyle \quad (-5,-\arctan(\frac{4}{3})+\pi)$

Work Step by Step

Cartesian: $(x,y)=(r\cos\theta,r\sin\theta)$ $r^{2}=x^{2}+y^{2},\displaystyle \qquad\tan\theta=\frac{y}{x}$ Plotting $(r,\theta):$ - if $r$ is positive, then the point lies on the terminal side of $\theta+2k\pi,\ k\in \mathbb{Z}$ - if $r$ is negative, then the point lies opposite the terminal side of $\theta$, it lies on the terminal side of $\theta\pm\pi+2k\pi=\theta+ (2k+1)\pi,\ k\in \mathbb{Z}$ $ a.\quad$ $\left[\begin{array}{lll} r^{2}=9+9 & & \tan\theta=\frac{3}{3}\\ r=-3\sqrt{2} & & \theta=\pi/4+k\pi \end{array}\right], \quad$ $(3,3)$ is in quadrant I, and, since we chose a negative $r$, we take the angle in the opposite quadrant, quadrant III. We take $\theta=5\pi/4$ Polar coordinates:$\quad (-3\sqrt{2},5\pi/4)$ $ b.\quad$ $\left[\begin{array}{lll} r^{2}=1+0 & & \tan\theta=\frac{0}{1}\\ r=-1 & & \theta=0+k\pi \end{array}\right], \quad$ $(-1,0)$ is on the -x axis, and, since we chose a negative $r$, we take the angle for the opposite axis, the +x axis. We take $\theta=0$. Polar coordinates:$\quad (-1,0)$ $ c.\quad$ $\left[\begin{array}{lll} r^{2}=1+3 & & \tan\theta=\frac{\sqrt{3}}{-1}\\ r=-2 & & \theta=-\pi/3+k\pi \end{array}\right],$ $(-1,\sqrt{3})$ is in quadrant II, and, since we chose a negative $r$, we take the angle in the opposite quadrant, quadrant IV. We take $\theta=5\pi/3.$ Polar coordinates:$\quad (-2,5\pi/3)$ $ d.\quad$ $\left[\begin{array}{lll} r^{2}=16+9 & & \tan\theta=\frac{-3}{4}\\ r=-5 & & \theta=-\arctan(\frac{3}{4})+k\pi \end{array}\right]$ $(4,-3)$ is in quadrant IV, and, since we chose a negative $r$, we take the angle in the opposite quadrant, quadrant II. We take $\displaystyle \theta=-\arctan(\frac{3}{4})+\pi$ Polar coordinates:$\displaystyle \quad (-5,-\arctan(\frac{3}{4})+\pi)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.