University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.3 - Polar Coordinates - Exercises - Page 577: 7

Answer

$a.\quad(\sqrt{2},\pi/4)$ $b.\quad(3,\pi)$ $c.\quad(2,11\pi/6)$ $d.\displaystyle \quad(5, \arctan(-\frac{4}{3})+\pi)$

Work Step by Step

Cartesian: $(x,y)=(r\cos\theta,r\sin\theta)$ $r^{2}=x^{2}+y^{2},\displaystyle \qquad\tan\theta=\frac{y}{x}$ Plotting $(r,\theta):$ - if $r$ is positive, then the point lies on the terminal side of $\theta+2k\pi,\ k\in \mathbb{Z}$ - if $r$ is negative, then the point lies opposite the terminal side of $\theta$, it lies on the terminal side of $\theta\pm\pi+2k\pi=\theta+ (2k+1)\pi,\ k\in \mathbb{Z}$ $ a.\quad$ $\left[\begin{array}{lll} r^{2}=1+1 & & \tan\theta=\frac{1}{1}\\ r=\sqrt{2} & & \theta=\pi/4+k\pi \end{array}\right]$ The point $(1,1)$ is quadrant I, we keep $\theta=\pi/4$ $\qquad (\sqrt{2},\pi/4)$ $ b.\quad$ $\left[\begin{array}{lll} r^{2}=9+0 & & \tan\theta=0\\ r=3 & & \theta=0+k\pi \end{array}\right]\qquad$ The point $($-3,0$)$ is on the -x side of the x-axis; we take $\theta=\pi$ $(3,\pi)$ $ c.\quad$ $\left[\begin{array}{lll} r^{2}=3+1 & & \tan\theta=-\frac{1}{\sqrt{3}}\\ r=2 & & \theta=-\pi/6\frac{1}{\sqrt{3}}+k\pi \end{array}\right]\qquad$ The point $(\sqrt{3},-1)$ is quadrant I; we take $\theta=11\pi/6$ $\qquad (2,11\pi/6)$ $ d.\quad$ $\left[\begin{array}{lll} r^{2}=9+16 & & \tan\theta=-\frac{4}{3}\\ r=5 & & \theta=\arctan(-\frac{4}{3})+k\pi \end{array}\right]$ The point $(-3,4)$ is quadrant II; we take $\displaystyle \theta=\arctan(-\frac{4}{3})+\pi$ $(5, \displaystyle \arctan(-\frac{4}{3})+\pi)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.