University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.3 - Polar Coordinates - Exercises - Page 577: 6

Answer

$a.\quad(1,1)$ $b.\quad (1,0)$ $c.\quad (0,0)$ $d.\quad (-1,-1)$ $e.\displaystyle \quad (\frac{3\sqrt{3}}{2},-\frac{3}{2})$ $f.\quad (3,4)$ $g.\quad (1,0)$ $h.\quad (-\sqrt{3},3)$

Work Step by Step

$ a.\quad$ Polar: $(r,\theta)=(\sqrt{2},\pi/4)$ Cartesian: $(r\displaystyle \cos\theta,r\sin\theta)=(\sqrt{2}\cdot\frac{1}{\sqrt{2}},\sqrt{2}\cdot\frac{1}{\sqrt{2}})=(1,1)$ $ b.\quad$ Polar: $(r,\theta)=(1,0)$ Cartesian: $(r\cos\theta,r\sin\theta)=(1\cdot 1,1\cdot 0)=(1,0)$ $ c.\quad$ Polar: $(r,\theta)=(0,\pi/2)$ Cartesian: $(r\cos\theta,r\sin\theta)=(0,0)$ $ d.\quad$ Polar: $(r,\theta)=(-\sqrt{2},\pi/4)$ Cartesian: $(r\displaystyle \cos\theta,r\sin\theta)=(-\sqrt{2}\cdot\frac{1}{\sqrt{2}},-\sqrt{2}\cdot\frac{1}{\sqrt{2}})=(-1,-1)$ $ e.\quad$ Polar: $(r,\theta)=(-3,5\pi/6)$ Cartesian: $(r\displaystyle \cos\theta,r\sin\theta)=(-3\cdot(-\frac{\sqrt{3}}{2}),-3\cdot\frac{1}{2})=(\frac{3\sqrt{3}}{2},-\frac{3}{2})$ $ f.\quad$ Polar: $(r,\displaystyle \theta)=(5,\tan^{-1}\frac{4}{3})$ Cartesian: $(r\cos\theta,r\sin\theta)=(5\cdot 0.6,5\cdot 0.8)=(3,4)$ $ g.\quad$ Polar: $(r,\theta)=(-1,7\pi)$ Cartesian: $(r\cos\theta,r\sin\theta)=(-1\cdot(-1),-1\cdot 0)=(1,0)$ $ h.\quad$ Polar: $(r,\theta)=(2\sqrt{3},2\pi/3)$ Cartesian: $(r\displaystyle \cos\theta,r\sin\theta)=(2\sqrt{3}\cdot(-\frac{1}{2}),2\sqrt{3}\cdot(\frac{\sqrt{3}}{2}))=(-\sqrt{3},3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.