University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.3 - Polar Coordinates - Exercises - Page 577: 15

Answer

Graph:

Work Step by Step

$\left\{\begin{array}{ll} (x,y)=(r\cos\theta,r\sin\theta) & \\ r^{2}=x^{2}+y^{2}, & \tan\theta=\frac{y}{x} \end{array}\right.$ $r$ is the directed distance of the point from the pole. $\theta$ defines the angle of the ray on which the point lies, - remains $\theta$ when $r$ is positive - becomes $\theta\pm\pi$ when $r$ is negative The points of the region are such that - the directed distance r is positive or zero, - the angle is any angle between $0$ and $\pi/6$ (1st quadrant) $\theta=0$ is the +x axis ray, $\theta=\pi/6$ is the ray on the line $y=(\displaystyle \tan\frac{\pi}{6})x$, from the origin into the 1st quadrant.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.