University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.3 - Polar Coordinates - Exercises - Page 577: 37

Answer

A line with slope $2$ and y-intercept $5$.

Work Step by Step

Conversion of polar coordinates and Cartesian coordinates are as follows: a)$r^2=x^2+y^2 \implies r=\sqrt {x^2+y^2}$ b) $\tan \theta =\dfrac{y}{x} \implies \theta =\tan^{-1} (\dfrac{y}{x})$ c) $x=r \cos \theta$, d) $y=r \sin \theta$ Since, we have $x=r \cos \theta$ and $y=r \sin \theta$ On multiplying both sides with $\sin \theta -2 \cos \theta$, we get $r\sin \theta -2r \cos \theta=5$ Therefore, the Cartesian equation is $y-2x=5 \implies y=2x+5$ This shows a line with slope $2$ and y-intercept $5$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.