Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 431: 81

Answer

$\displaystyle \frac{6}{5}$

Work Step by Step

$L=\displaystyle \int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^{2}}dx$ $\displaystyle \frac{dy}{dx}=\frac{d}{dx}[\frac{1}{2}\cosh 2x]=\frac{1}{2}\cdot\sinh 2x\cdot 2=\sinh 2x$ $L=\displaystyle \int_{0}^{\ln\sqrt{5}}\sqrt{1+\sinh^{2}2x}dx$ Apply the identity: $\cosh^{2}x-\sinh^{2}x=1$ $L=\displaystyle \int_{0}^{\ln\sqrt{5}}\cosh 2xdx=\frac{1}{2}[\sinh 2x]_{0}^{\ln\sqrt{5}}$ Evaluate: $\displaystyle \sinh(2\ln\sqrt{5})=\sinh(2\cdot\frac{1}{2}\ln 5)=\sinh(5)$ $=\displaystyle \frac{e^{\ln 5}-e^{-\ln 5}}{2}=\frac{5-\frac{1}{5}}{2}\cdot\frac{5}{5}=\frac{25-1}{10}=\frac{12}{5}$ $\displaystyle \sinh 0=\frac{1-1}{1+1}=0$ $L=\displaystyle \frac{1}{2}\cdot\frac{12}{5}=\frac{6}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.