Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 431: 71

Answer

$a.\displaystyle \quad-{\rm sech}^{-1}(\frac{12}{13})+{\rm sech}^{-1}(\frac{4}{5})$ $b.\displaystyle \quad\ln\frac{4}{3}$

Work Step by Step

$(a)$ Use table: "Integrals leading to inverse hyperbolic functions" $\displaystyle \int\frac{du}{u\sqrt{a^{2}-u^{2}}}=-\frac{1}{a}{\rm sech}^{-1}(\frac{u}{a})+C, \quad 0 \lt u \lt a$ $a=1,$ $u=4x, \displaystyle \quad (x=\frac{u}{4}),\quad dx=\frac{dx}{4}$ Bounds change :$\left\{\begin{array}{lll} x=3/13 & \rightarrow & u=12/13\\ x=1/5 & \rightarrow & u=4/5 \end{array}\right.$ $\displaystyle \int_{1/5}^{3/13}\frac{dx}{x\sqrt{1-16x^{2}}}=\int_{4/5}^{12/13}\frac{\frac{du}{4}}{\frac{u}{4}\sqrt{1-u^{2}}}$ $=\displaystyle \int_{4/5}^{12/13}\frac{du}{u\sqrt{1-u^{2}}}$ $= \left[ -{\rm sech}^{-1}u \right]_{4/5}^{12/13} $ $=-{\rm sech}^{-1}(\displaystyle \frac{12}{13})+{\rm sech}^{-1}(\frac{4}{5})$ $(b)$ Using the formulas in the box above these exercises, ${\rm sech}^{-1}x=\displaystyle \ln(\frac{1+\sqrt{1-x^{2}}}{x})$ ,$\quad 0 \lt x\leq 1$ $-{\rm sech}^{-1}(\displaystyle \frac{12}{13})+{\rm sech}^{-1}(\frac{4}{5})=-\ln(\frac{1+\sqrt{1-(\frac{144}{169})}}{\frac{12}{13}})+\ln(\frac{1+\sqrt{1-(\frac{16}{25})}}{\frac{4}{5}})$ $=-\displaystyle \ln(\frac{1+\sqrt{\frac{25}{169}}}{\frac{12}{13}})+\ln(\frac{1+\sqrt{\frac{9}{25}}}{\frac{4}{5}})$ $=-\displaystyle \ln(\frac{1+\frac{5}{13}}{\frac{12}{13}})+\ln(\frac{1+\frac{3}{5}}{\frac{4}{5}})$ $=-\displaystyle \ln(\frac{\frac{18}{13}}{\frac{12}{13}})+\ln(\frac{\frac{8}{5}}{\frac{4}{5}})$ $=-\displaystyle \ln(\frac{18}{12})+\ln(\frac{8}{4})$ $=\ln(2)-\ln(1.5)\qquad $... ( $\displaystyle \ln a-\ln b=\ln\frac{a}{b}$ ) $=\displaystyle \ln\frac{2}{1.5}$ $=\displaystyle \ln\frac{4}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.