Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 431: 65

Answer

$\ln 3$

Work Step by Step

Substitute into the relevant formula: ${\rm sech}^{-1}(\displaystyle \frac{3}{5})=\ln(\frac{1+\sqrt{1-(\frac{3}{5})^{2}}}{(\frac{3}{5})})$ $=\displaystyle \ln(\frac{5(1+\sqrt{16/25}}{3})$ $=\displaystyle \ln(\frac{5(1+\frac{4}{5})}{3})$ $=\displaystyle \ln(\frac{5+4}{3})$ $=\ln 3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.