Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.7 - Hyperbolic Functions - Exercises 7.7 - Page 431: 72

Answer

$a.\displaystyle \quad\frac{\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}(\frac{1}{2})-\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}(1)}{2}$ $b.\displaystyle \quad\frac{1}{2}\ln(\frac{2+\sqrt{5}}{1+\sqrt{2}})$

Work Step by Step

$(a)$ Use table: "Integrals leading to inverse hyperbolic functions" $\displaystyle \int\frac{du}{u\sqrt{a^{2}+u^{2}}}=-\frac{1}{a}\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}|\frac{u}{a}|+C,\quad u\neq 0$ and $a\gt 0$ $a=2,$ $u=x, \quad du=dx$ $\displaystyle \int_{1}^{2}\frac{dx}{x\sqrt{1-16x^{2}}}= \left[ -\frac{1}{2}\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}|\frac{x}{2}| \right]_{1}^{2} $ $=\displaystyle \frac{1}{2}[-\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}1+\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}\frac{1}{2}]$ $=\displaystyle \frac{\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}(\frac{1}{2})-\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}(1)}{2}$ $(b)$ Using the formulas in the box above these exercises, $\displaystyle \mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}x=\ln(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|})$ ,$\quad x\neq 0$ $\displaystyle \frac{\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}(\frac{1}{2})-\mathrm{c}\mathrm{s}\mathrm{c}\mathrm{h}^{-1}(1)}{2}=\frac{\ln(2+\frac{\sqrt{1+\frac{1}{4}}}{\frac{1}{2}})-\ln(1+\frac{\sqrt{1+1}}{1})}{2}$ $=\displaystyle \frac{\ln(2+2\sqrt{5/4})-\ln(1+\sqrt{2})}{2}$ $=\displaystyle \frac{1}{2}(\ln\frac{2+\frac{2\sqrt{5}}{2}}{1+\sqrt{2}})$ $=\displaystyle \frac{1}{2}\ln(\frac{2+\sqrt{5}}{1+\sqrt{2}})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.